Open Access
MicroRNA‐134‐5p inhibition rescues long‐term plasticity and synaptic tagging/capture in an Aβ(1–42)‐induced model of Alzheimer’s disease
Author(s) -
Baby Nimmi,
Alagappan Nithyakalyani,
Dheen Shaikali Thameem,
Sajikumar Sreedharan
Publication year - 2020
Publication title -
aging cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.103
H-Index - 140
eISSN - 1474-9726
pISSN - 1474-9718
DOI - 10.1111/acel.13046
Subject(s) - long term potentiation , synaptic plasticity , neuroscience , creb , biology , microrna , neuroplasticity , neurotrophic factors , hippocampus , brain derived neurotrophic factor , neurotrophin , transcription factor , genetics , receptor , gene
Abstract Progressive memory loss is one of the most common characteristics of Alzheimer's disease (AD), which has been shown to be caused by several factors including accumulation of amyloid β peptide (Aβ) plaques and neurofibrillary tangles. Synaptic plasticity and associative plasticity, the cellular basis of memory, are impaired in AD. Recent studies suggest a functional relevance of microRNAs (miRNAs) in regulating plasticity changes in AD, as their differential expressions were reported in many AD brain regions. However, the specific role of these miRNAs in AD has not been elucidated. We have reported earlier that late long‐term potentiation (late LTP) and its associative mechanisms such as synaptic tagging and capture (STC) were impaired in Aβ (1–42)‐induced AD condition. This study demonstrates that expression of miR‐134‐5p, a brain‐specific miRNA is upregulated in Aβ (1–42)‐treated AD hippocampus. Interestingly, the loss of function of miR‐134‐5p restored late LTP and STC in AD. In AD brains, inhibition of miR‐134‐5p elevated the expression of plasticity‐related proteins (PRPs), cAMP‐response‐element binding protein (CREB‐1) and brain‐derived neurotrophic factor (BDNF), which are otherwise downregulated in AD condition. The results provide the first evidence that the miR‐134‐mediated post‐transcriptional regulation of CREB‐1 and BDNF is an important molecular mechanism underlying the plasticity deficit in AD; thus demonstrating the critical role of miR‐134‐5p as a potential therapeutic target for restoring plasticity in AD condition.