z-logo
open-access-imgOpen Access
Analysis of somatic mutations identifies signs of selection during in vitro aging of primary dermal fibroblasts
Author(s) -
Narisu Narisu,
Rothwell Rebecca,
Vrtačnik Peter,
Rodríguez Sofía,
Didion John,
Zöllner Sebastian,
Erdos Michael R.,
Collins Francis S.,
Eriksson Maria
Publication year - 2019
Publication title -
aging cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.103
H-Index - 140
eISSN - 1474-9726
pISSN - 1474-9718
DOI - 10.1111/acel.13010
Subject(s) - biology , somatic cell , selection (genetic algorithm) , in vitro , genetics , mutation , microbiology and biotechnology , gene , artificial intelligence , computer science
Somatic mutations are critical for cancer development and may play a role in age‐related functional decline. Here, we used deep sequencing to analyze the prevalence of somatic mutations during in vitro cell aging. Primary dermal fibroblasts from healthy subjects of young and advanced age, from Hutchinson–Gilford progeria syndrome and from xeroderma pigmentosum complementation groups A and C, were first restricted in number and then expanded in vitro. DNA was obtained from cells pre‐ and post‐expansion and sequenced at high depth (1656× mean coverage), over a cumulative 290 kb target region, including the exons of 44 aging‐related genes. Allele frequencies of 58 somatic mutations differed between the pre‐ and post‐cell culture expansion passages. Mathematical modeling revealed that the frequency change of three of the 58 mutations was unlikely to be explained by genetic drift alone, indicative of positive selection. Two of these three mutations, CDKN2A c.53C>T (T18M) and ERCC8 c.*772T>A, were identified in cells from a patient with XPA. The allele frequency of the CDKN2A mutation increased from 0% to 55.3% with increasing cell culture passage. The third mutation, BRCA2 c.6222C>T (H2074H), was identified in a sample from a healthy individual of advanced age. However, further validation of the three mutations suggests that other unmeasured variants probably provide the selective advantage in these cells. Our results reinforce the notions that somatic mutations occur during aging and that some are under positive selection, supporting the model of increased tissue heterogeneity with increased age.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here