
KCNQ1OT1 promotes autophagy by regulating miR‐200a/FOXO3/ATG7 pathway in cerebral ischemic stroke
Author(s) -
Yu Shijia,
Yu Mingjun,
He Xin,
Wen Lulu,
Bu Zhongqi,
Feng Juan
Publication year - 2019
Publication title -
aging cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.103
H-Index - 140
eISSN - 1474-9726
pISSN - 1474-9718
DOI - 10.1111/acel.12940
Subject(s) - foxo3 , gene knockdown , autophagy , biology , downregulation and upregulation , regulator , ischemia , stroke (engine) , microbiology and biotechnology , cancer research , neuroscience , medicine , apoptosis , gene , genetics , mechanical engineering , engineering
Dysregulation of long noncoding RNAs (lncRNAs) is associated with abnormal development and pathophysiology in the brain. Increasing evidence has indicated that ischemic stroke is becoming the most common cerebral disease in aging populations. The treatment of ischemic stroke is challenging, due in part to ischemia and reperfusion (I/R) injury. In this study, we revealed that potassium voltage‐gated channel subfamily Q member 1 opposite strand 1 (KCNQ1OT1) was significantly upregulated in ischemic stroke. Knockdown of KCNQ1OT1 remarkably reduced the infarct volume and neurological impairments in transient middle cerebral artery occlusion (tMCAO) mice. Mechanistically, KCNQ1OT1 acted as a competing endogenous RNA of miR‐200a to regulate downstream forkhead box O3 (FOXO3) expression, which is a transcriptional regulator of ATG7. Knockdown of KCNQ1OT1 might inhibit I/R‐induced autophagy and increase cell viability via the miR‐200a/FOXO3/ATG7 pathway. This finding offers a potential novel strategy for ischemic stroke therapy.