z-logo
open-access-imgOpen Access
HDAC 3 negatively regulates spatial memory in a mouse model of Alzheimer's disease
Author(s) -
Zhu Xiaolei,
Wang Sulei,
Yu Linjie,
Jin Jiali,
Ye Xing,
Liu Yi,
Xu Yun
Publication year - 2017
Publication title -
aging cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.103
H-Index - 140
eISSN - 1474-9726
pISSN - 1474-9718
DOI - 10.1111/acel.12642
Subject(s) - morris water navigation task , hdac3 , hippocampus , dendritic spine , microglia , hdac1 , presenilin , amyloid precursor protein , barnes maze , alzheimer's disease , neuroscience , biology , histone , endocrinology , medicine , microbiology and biotechnology , disease , histone deacetylase , hippocampal formation , biochemistry , spatial learning , inflammation , gene
Summary The accumulation and deposition of beta‐amyloid (Aβ) is a key neuropathological hallmark of Alzheimer's disease ( AD ). Histone deacetylases ( HDAC s) are promising therapeutic targets for the treatment of AD , while the specific HDAC isoforms associated with cognitive improvement are poorly understood. In this study, we investigate the role of HDAC 3 in the pathogenesis of AD . Nuclear HDAC 3 is significantly increased in the hippocampus of 6‐ and 9‐month‐old APP swe/ PS 1dE9 ( APP / PS 1) mice compared with that in age‐matched wild‐type C57 BL /6 (B6) mice. Lentivirus ‐mediated inhibition or overexpression of HDAC3 was used in the hippocampus of APP/PS1 mice to investigate the role of HDAC 3 in spatial memory, amyloid burden, dendritic spine density, glial activation and tau phosphorylation. Inhibition of HDAC 3 in the hippocampus attenuates spatial memory deficits, as indicated in the Morris water maze test, and decreases amyloid plaque load and Aβ levels in the brains of APP / PS 1 mice. Dendritic spine density is increased, while microglial activation is alleviated after HDAC 3 inhibition in the hippocampus of 9‐month‐old APP / PS 1 mice. Furthermore, HDAC 3 overexpression in the hippocampus increases Aβ levels, activates microglia, and decreases dendritic spine density in 6‐month‐old APP / PS 1 mice. In conclusion, our results indicate that HDAC 3 negatively regulates spatial memory in APP / PS 1 mice and HDAC 3 inhibition might represent a potential therapy for the treatment of AD .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom