z-logo
open-access-imgOpen Access
Spontaneous cleavage of proteins at serine and threonine is facilitated by zinc
Author(s) -
Lyons Brian,
Kwan Ann H.,
Truscott Roger J.W.
Publication year - 2016
Publication title -
aging cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.103
H-Index - 140
eISSN - 1474-9726
pISSN - 1474-9718
DOI - 10.1111/acel.12428
Subject(s) - biology , threonine , serine , cleavage (geology) , zinc , biochemistry , phosphorylation , chemistry , paleontology , organic chemistry , fracture (geology)
Summary Old proteins are widely distributed in the body. Over time, they deteriorate and many spontaneous reactions, for example isomerisation of Asp and Asn, can be replicated by incubation of peptides under physiological conditions. One of the signatures of long‐lived proteins that has proven to be difficult to replicate in vitro is cleavage on the N‐terminal side of Ser residues, and this is important since cleavage at Ser, and also Thr, has been observed in a number of human proteins. In this study, the autolysis of Ser‐ and Thr‐containing peptides was investigated with particular reference to discovering factors that promote cleavage adjacent to Ser/Thr at neutral pH . It was found that zinc catalyses cleavage of the peptide bond on the N‐terminal side of Ser residues and further that this process is markedly accelerated if a His residue is adjacent to the Ser. NMR analysis indicated that the imidazole group co‐ordinates zinc and that once zinc is co‐ordinated, it can polarize the carbonyl group of the peptide bond in a manner analogous to that observed in the active site of the metalloexopeptidase, carboxypeptidase A. The hydroxyl side chain of Ser/Thr is then able to cleave the adjacent peptide bond. These observations enable an understanding of the origin of common truncations observed in long‐lived proteins, for example truncation on the N‐terminal side of Ser 8 in Abeta, Ser 19 in alpha B crystallin and Ser 66 in alpha A crystallin. The presence of zinc may therefore significantly affect the long‐term stability of cellular proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here