z-logo
open-access-imgOpen Access
MicroRNA‐125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age
Author(s) -
Cheng NaiLin,
Chen Xiaochun,
Kim Jiewan,
Shi Alvin H.,
Nguyen Cuong,
Wersto Robert,
Weng Nanping
Publication year - 2015
Publication title -
aging cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.103
H-Index - 140
eISSN - 1474-9726
pISSN - 1474-9718
DOI - 10.1111/acel.12294
Subject(s) - ccl4 , chemokine , biology , immune system , cd8 , microrna , inflammation , immunology , microbiology and biotechnology , chemistry , gene , genetics , carbon tetrachloride , organic chemistry
Summary Chemokines play a pivotal role in regulating the immune response through a tightly controlled expression. Elevated levels of inflammatory chemokines commonly occur with aging but the mechanism underlying this age‐associated change is not fully understood. Here, we report the role of microRNA‐125b (miR‐125b) in regulating inflammatory CC chemokine 4 (CCL4) expression in human immune cells and its altered expression with aging. We first analyzed the mRNA level of CCL4 in eight different types of immune cells including CD4 and CD8 T‐cell subsets (naïve, central and effector memory), B cells and monocytes in blood from both young (≤42 years) and old (≥70 years) adults. We observed that monocytes and naïve CD8 T cells expressed higher levels of CCL4 and exhibited an age‐related increase in CCL4. We then found the level of miR‐125b was inversely correlated with the level of CCL4 in these cells, and the level of miR‐125b was reduced in monocytes and naïve CD8 T cells of the old compared to the young adults. Knock‐down of miR‐125b by shRNA in monocytes and naïve CD8 T cells led to an increase of CCL4 protein, whereas enhanced miR‐125b expression by transfection in naïve CD8 T cells resulted in a reduction of the CCL4 mRNA and protein in response to stimulation. Finally, we demonstrated that miR‐125b action requires the ‘seed’ sequence in 3′UTR of CCL4. Together these findings demonstrated that miR‐125b is a negative regulator of CCL4 and its reduction is partially responsible for the age‐related increase of CCL4.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here