Premium
Intercropping hampers the nocturnal biological control of aphids
Author(s) -
Gontijo L.M.,
Saldanha A.V.,
Souza D.R.,
Viana R.S.,
Bordin B.C.,
Antonio A.C.
Publication year - 2018
Publication title -
annals of applied biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 80
eISSN - 1744-7348
pISSN - 0003-4746
DOI - 10.1111/aab.12407
Subject(s) - intercropping , biology , predation , aphid , biological pest control , nocturnal , ecology , stratum , agronomy , paleontology
Increasing plant diversity in agroecosystems (i.e. intercropping) has been widely accepted as a means of promoting conservation biological control of mites and insect pests. Nevertheless, the contribution from underlying mechanisms such as the provision of non‐prey alternative food (i.e. pollen and nectar) and shelter have not been properly disentangled; and additionally, it remains unexplored whether the performance of nocturnal and diurnal natural enemies is improved when provided with diverse plant communities. Using open field experiments and a greenhouse microcosm, we investigated whether intercropping collards with parsley could create shelter for natural enemies in the lower stratum (parsley), and whether or not nocturnal and diurnal natural enemies would carry out aphid biological control equally well in this increased plant diversity scenario (intercropping). The results showed that the shelter alone provided by the lower stratum/companion plants (parsley) mediated an increase in the abundance of natural enemies without involving the provision of non‐prey alternative food. However, the biological control of aphids exerted by nocturnal predators was negatively affected by intercropping. The lower stratum (parsley) appeared to hamper the ability of nocturnal predators to reach aphids more quickly on the collard host plants (higher stratum). In total, our findings indicate that intercropping non‐flowering companion plants is likely enough to mediate an increase of natural enemies via shelter provision. In addition, the results suggest that nocturnal predators, or non‐flying predators for that matter, are hampered by complex lower stratum vegetation. Thus, considering natural enemy behaviour and plant characteristics when designing polyculture systems are vital for attaining conservation biological control success.