z-logo
Premium
Characterisation of two wheat enolase cDNA showing distinct patterns of expression in leaf and crown tissues of plants exposed to low temperature
Author(s) -
Sharma P.,
Ganeshan S.,
Fowler D.B.,
Chibbar R.N.
Publication year - 2013
Publication title -
annals of applied biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 80
eISSN - 1744-7348
pISSN - 0003-4746
DOI - 10.1111/aab.12019
Subject(s) - biology , complementary dna , enolase , rapid amplification of cdna ends , gene , microbiology and biotechnology , gene expression , genetics , molecular cloning , immunohistochemistry , immunology
Abstract Seasonal low temperature ( LT ) adversely affects growth of plants. The onset of LT in temperate zones also entails the process of cold acclimation, preparing the plants to withstand freezing temperatures. During this process of cold acclimation a number of physiological, biochemical and molecular changes occur. A differentially expressed enolase gene in wheat plants exposed to LT was previously identified by cDNA ‐amplified fragment length polymorphism. In this study, two wheat enolase cDNA , TaENO ‐a and TaENO ‐b amplified by 5′,3′ rapid amplification of cDNA end ( RACE )‐ PCR (polymerase chain reaction), were isolated and characterised. Quantitative real‐time PCR ( QPCR ) was done to assess their expression patterns in leaf and crown tissues of wheat plants exposed to LT . BLAST searches and bioinformatic analyses were done to determine the structure, domains and phylogeny of the cloned sequences. The two cDNA sequences differed mostly in the 5′ and 3′ untranslated regions. Deduced amino acid sequence showed high identity to bacteria, yeast, fungi, human and plant enolases with conserved putative DNA ‐binding and repressor domains. A genomic clone containing 17 exons distributed over 4.5 kb structurally shared a high degree of similarity to rice enolase. QPCR revealed combined effects of LT and ageing on expression of TaENO ‐a and TaENO ‐b . Down‐regulation of TaENO ‐a was observed with age in the crown tissues upon exposure to LT , but in leaf initial up‐regulation was followed by down‐regulation. Expression of TaENO ‐b was similar to expression patterns previously reported for cold‐regulated ( COR ) genes in wheat, wherein the recessive vrnA ‐1 allele influenced its expression in the leaf and genetic background determines its expression in the crown.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here