Premium
Bringing multivariate support to multiscale codependence analysis: Assessing the drivers of community structure across spatial scales
Author(s) -
Guénard Guillaume,
Legendre Pierre
Publication year - 2018
Publication title -
methods in ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.425
H-Index - 105
ISSN - 2041-210X
DOI - 10.1111/2041-210x.12864
Subject(s) - statistics , multivariate statistics , community structure , spatial ecology , statistical power , type i and type ii errors , sample size determination , ecology , computer science , mathematics , biology
Multiscale codependence analysis (MCA) quantifies the joint spatial distribution of a pair of variables in order to provide a spatially explicit assessment of their relationships to one another. For the sake of simplicity, the original definition of MCA only considered a single response variable (e.g. a single species). However, that definition would limit the application of MCA when many response variables are studied jointly, for example when one wants to study the effect of the environment on the spatial organisation of a multi‐species community in an explicit manner. In the present paper, we generalise MCA to multiple response variables. We conducted a simulation study to assess the statistical properties (i.e. type I error rate and statistical power) of multivariate MCA (mMCA) and found that it had honest type I error rate and sufficient statistical power for practical purposes, even with modest sample sizes. We also exemplified mMCA by applying it to two ecological datasets. The simulation study confirmed the adequacy of mMCA from a statistical standpoint: it has honest type I error rates and sufficient power to be useful in practice. Using mMCA, we were able to detect variation in fish community structure along the Doubs River (in France), which was associated with large spatial structures in the variation of physical and chemical variables related to water quality. Also, mMCA usefully described the spatial variation of an Oribatid mite community structure associated with a gradient of water content superimposed on various smaller‐scale spatial features associated with vegetation cover in the peat blanket surrounding Lac Geai (in Québec, Canada). In addition to demonstrating the soundness of mMCA in theory and practice, we further discuss the strengths and assumptions of mMCA and describe other potential scenarios where it would be helpful to biologists interested in assessing influence of environmental conditions on community structure in a spatially explicit way.