z-logo
open-access-imgOpen Access
Lung‐specific exosomes for co‐delivery of CD47 blockade and cisplatin for the treatment of non–small cell lung cancer
Author(s) -
Cui Zhilei,
Ruan Zhengshang,
Zeng Junxiang,
Sun Jinyuan,
Ye Wenjing,
Xu Weiguo,
Guo Xuejun,
Zhang Linlin,
Song Lin
Publication year - 2022
Publication title -
thoracic cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.823
H-Index - 28
eISSN - 1759-7714
pISSN - 1759-7706
DOI - 10.1111/1759-7714.14606
Subject(s) - medicine , exosome , cancer research , flow cytometry , cisplatin , in vivo , cytokine , pharmacology , cd47 , immune system , microvesicles , immunology , biology , chemotherapy , biochemistry , microrna , microbiology and biotechnology , gene
Abstract A cluster of differentiation 47 (CD47) and immune‐modulatory protein for myeloid cells has been implicated in cisplatin (CDDP) resistance. Exosome delivery of drugs has shown great potential for targeted drug delivery in the treatment of various diseases. In the current study, we explored the approach of co‐delivering CDDP and CD47 antibody with MDA‐MB‐231 cell‐derived exosome 231‐exo (CaCE) and assessed the phagocytosis activity of bone marrow flow cytometry derived macrophages (BMDM) against co‐cultured A549 cells. CD8 + T‐cell proliferation was examined with flow cytometry analysis. In vivo, we used the Lewis lung carcinoma (LLC) tumor‐bearing mouse model and assessed survival rate, tumor weight, phagocytosis, and T‐cell proliferation, as well as cytokine levels in tumors analyzed by enzyme‐linked immunoassay (ELISA). Although co‐administration of CDDP with anti‐CD47 (CDDP and aCD47) showed a significant antitumor effect, CaCE had an even more dramatic anticancer effect in survival rate and tumor weight. We observed increased phagocytosis activity selectively against lung tumor cells in vivo and in vitro with exosome CaCE treatment. CaCE treatment also increased T‐cell proliferation compared to the vehicle treatment and co‐administration groups. Furthermore, immunostimulatory interleukin (IL)‐12p and interferon (IFN)‐γ were increased, whereas transforming growth factor β (TGF‐β) were decreased, indicating the improved CDDP anticancer effect is related to a tumor microenvironmental change. Our study demonstrates a dramatically improved anticancer effect of CDDP when administered by exosome co‐delivery with anti‐CD47.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here