z-logo
open-access-imgOpen Access
Integrating genetic mutations and expression profiles for survival prediction of lung adenocarcinoma
Author(s) -
Song Yueqiang,
Chen Donglai,
Zhang Xi,
Luo Yuping,
Li Siguang
Publication year - 2019
Publication title -
thoracic cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.823
H-Index - 28
eISSN - 1759-7714
pISSN - 1759-7706
DOI - 10.1111/1759-7714.13072
Subject(s) - adenocarcinoma , transcriptome , lung cancer , medicine , survival analysis , genotype , phenotype , oncology , genetic heterogeneity , gene , bioinformatics , cancer , biology , genetics , gene expression
Background Lung adenocarcinoma (LUAD) is a set of heterogeneous diseases with distinct genetic and transcriptomic characteristics. Since the introduction of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society histologic classification, increasing evidence has provided insights into genomic mutations and rearrangements among individual histologic subtypes of LUAD. However, how genotypic and phenotypic features of LUAD are interconnected is not well understood. Methods We obtained the genomic, transcriptomic, and clinical data sets of 488 LUAD patients from The Cancer Genome Atlas database. Advanced statistical models were used to disentangle the interactions between genetic mutations and expression profiles, and to assess the alterations and changes in expression of each histologic subtype. The prognostic impacts of genetic mutations, expression profiles, and clinicopathological features were integrated to predict the outcomes of LUAD patients. Results From our data, one or more genetic mutations correlate with expression levels of 6054/18175 (33.3%) genes and explain 8–40% of observed variability in LUAD. The genetic mutations and expression profiles varied remarkably among the histologic subtypes of LUAD, which helped to explain the different prognostic impact based on subtype classification. Genomic, transcriptomic, and clinical data were all shown to have utility for predicting overall and recurrence‐free survival, with the largest contribution from the transcriptome. Conclusion Our prediction model integrating genetic mutations, expression profiles, and clinicopathological features exhibited superior accuracy over the current tumor node metastasis staging system to prognosticate outcomes of patients with LUAD (overall survival 67% vs. 55%, recurrence‐free survival 57% vs. 49%; P  < 0.01).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here