z-logo
Premium
Reduction‐oxidation cycles of organic matter increase bacterial activity in the pelagic oxycline
Author(s) -
Lau Maximilian P.,
Hupfer Michael,
Grossart HansPeter
Publication year - 2017
Publication title -
environmental microbiology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.229
H-Index - 69
ISSN - 1758-2229
DOI - 10.1111/1758-2229.12526
Subject(s) - anoxic waters , redox , dissolved organic carbon , chemistry , environmental chemistry , anaerobic respiration , respiration , organic matter , nitrate , pelagic zone , bacteria , ecology , inorganic chemistry , biology , botany , organic chemistry , genetics
Summary Dissolved organic matter (DOM) in aquatic ecosystems contains redox‐active moieties, which are prone to oxidation and reduction reactions. Oxidized moieties feature reduction potentials E h , so that the moieties may be used as terminal electron acceptors (TEAs) in microbial respiration with a thermodynamic energy yield between nitrate and sulfate reduction. Here, we study the response of pelagic freshwater bacteria to exposure to native DOM with varying availabilities of oxidized moieties and hence redox state. Our results show that the prevalence of oxidized DOM favors microbial production and growth in anoxic waters. Reduced DOM in stratified lakes may be oxidized when fluctuations of the oxycline expose DOM in previously anoxic water to epilimnetic oxygen. The resulting oxidized DOM may be rapidly used as TEAs in microbial respiration during subsequent periods of anoxia. We further investigate if the prevalence of these organic electron sinks in anaerobic incubations can induce changes in the microbial community. Our results reveal that DOM traversing transient redox interfaces selects for species that profit from such spatially confined and cyclically restored TEA reservoirs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here