Premium
Quaternary Stratigraphic Division and Paleoenvironmental Evolution Observed from Core LZK1 on Hengsha Island, Shanghai
Author(s) -
KE Xue,
XIE Jianlei,
ZHANG Zongyan,
ZOU Yarui,
WANG Guoquan
Publication year - 2020
Publication title -
acta geologica sinica ‐ english edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.444
H-Index - 61
eISSN - 1755-6724
pISSN - 1000-9515
DOI - 10.1111/1755-6724.14564
Subject(s) - quaternary , geology , pleistocene , early pleistocene , paleontology , holocene , fluvial , lithology , quaternary science , delta , glacial period , last glacial maximum , structural basin , aerospace engineering , engineering
The Quaternary sediments in the Yangtze delta are loose and lack precise stratification marks in the lithology. Moreover, due to the limitations of dating methods, it is difficult for Quaternary cores to deliver accurate age constraints. Thus, it is a challenge to establish the Quaternary stratigraphic framework. Gravity core LZK1 was drilled on Hengsha Island, Shanghai, in the Yangtze delta, in 2012. The core was terminated at 403.83 m below the local land surface, the uppermost 291.2 m comprising a thick sequence of Quaternary sediments. This study investigated the stratigraphic subdivision and paleoenvironmental change of the Quaternary sediments. From bottom to top, the Quaternary stratigraphic sequence can be subdivided into the lower Pleistocene Anting Formation, Middle Pleistocene Jiading Formation, Upper Pleistocene Chuansha Formation and Nanhui Formation, Holocene Loutang Formation, Shanghai Formation, and Rudong Formation. According to this study, the Hengsha Island area was dominated by a freshwater lacustrine environment during the early Pleistocene, an alternation of shallow lake and shore lake environment during the Middle Pleistocene, a delta plain to lagoonal environment during the early Upper Pleistocene, a fluvial channel to floodplain environment from the LGM (Last Glacial Maximum) to the end of the Upper Pleistocene, and a delta environment during the Holocene.