Premium
Late Quaternary Slip‐rates and Slip Partitioning on the Southeastern Xianshuihe Fault System, Eastern Tibetan Plateau
Author(s) -
Guihua CHEN,
Xiwei XU,
Xueze WEN,
YueGau CHEN
Publication year - 2016
Publication title -
acta geologica sinica ‐ english edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.444
H-Index - 61
eISSN - 1755-6724
pISSN - 1000-9515
DOI - 10.1111/1755-6724.12689
Subject(s) - geology , landform , quaternary , tectonics , plateau (mathematics) , slip (aerodynamics) , alluvial fan , seismology , fault (geology) , active fault , offset (computer science) , geomorphology , paleontology , mathematical analysis , physics , mathematics , structural basin , thermodynamics , computer science , programming language
Quantitative analysis of the kinematics of the active faults distributed around the Qinghai‐Tibetan Plateau is critical to understand current tectonic processes of the plateau. Chronological analysis, based on the comparison among regional climate and geomorphology, digital photogrammetry, offset landforms, and the tectonics were adopted in this study on the Xianshuihe fault in the eastern Tibetan plateau. Two or more offset‐age data were obtained for each segment of the Xianshuihe and the Yunongxi faults. The offset landforms, including river terrace, alluvial fan and glacial moraine, provide constraints for the late Quaternary slip rate of the Xianshuihe fault. The left‐lateral strike slip rate of the Xianshuihe fault decreases from 17 mm/a on the northwest segment to 9.3 mm/a on the southeast segment. Regarding the Xianshuihe fault zone and its adjacent blocks as a regional tectonic system, vector analysis was used to quantitatively analyze the longitudinal kinematical transformation and transversal slip partitioning on the fault zone in terms of the kinematical parameters of the main faults within the zone. The results show that there is a distributed vertical uplift at a rate of 6.1 mm/yr caused by shortening across the Gongga Mountains region. Based on these results, we established a model of the slip partitioning for the southeastern segment of the Xianshuihe fault zone.