Premium
Probing SWATH‐MS as a tool for proteome level quantification in a nonmodel fish
Author(s) -
Monroe Alison A.,
Zhang Huoming,
Schunter Celia,
Ravasi Timothy
Publication year - 2020
Publication title -
molecular ecology resources
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.96
H-Index - 136
eISSN - 1755-0998
pISSN - 1755-098X
DOI - 10.1111/1755-0998.13229
Subject(s) - proteome , biology , computational biology , identification (biology) , proteomics , fish <actinopterygii> , biomarker discovery , proteogenomics , computer science , bioinformatics , transcriptome , ecology , gene , fishery , genetics , gene expression
Quantitative proteomics via mass spectrometry can provide valuable insight into molecular and phenotypic characteristics of a living system. Recent mass spectrometry developments include data‐independent acquisition (SWATH/DIA‐MS), an accurate, sensitive and reproducible method for analysing the whole proteome. The main requirement for this method is the creation of a comprehensive spectral library. New technologies have emerged producing larger and more accurate species‐specific libraries leading to a progressive collection of proteome references for multiple molecular model species. Here, for the first time, we set out to compare different spectral library constructions using multiple tissues from a coral reef fish to demonstrate its value and feasibility for nonmodel organisms. We created a large spectral library composed of 12,553 protein groups from liver and brain tissues. Via identification of differentially expressed proteins under fish exposure to elevated pCO 2 and temperature, we validated the application and usefulness of these different spectral libraries. Successful identification of significant differentially expressed proteins from different environmental exposures occurred using the library with a combination of data‐independent and data‐dependent acquisition methods as well as both tissue types. Further analysis revealed expected patterns of significantly up‐regulated heat shock proteins in a dual condition of ocean warming and acidification indicating the biological accuracy and relevance of the method. This study provides the first reference spectral library for a nonmodel organism. It represents a useful guide for future building of accurate spectral library references in nonmodel organisms allowing the discovery of ecologically relevant changes in the proteome.