z-logo
Premium
First draft genome of an iconic clownfish species ( Amphiprion frenatus )
Author(s) -
Marcionetti Anna,
Rossier Victor,
Bertrand Joris A. M.,
Litsios Glenn,
Salamin Nicolas
Publication year - 2018
Publication title -
molecular ecology resources
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.96
H-Index - 136
eISSN - 1755-0998
pISSN - 1755-098X
DOI - 10.1111/1755-0998.12772
Subject(s) - biology , evolutionary biology , coral reef fish , genome , coral reef , population , genomics , adaptive radiation , anemone , sequence assembly , sea anemone , phylogenetic tree , ecology , gene , genetics , gene expression , demography , transcriptome , sociology
Clownfishes (or anemonefishes) form an iconic group of coral reef fishes, principally known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare groups to have experienced an adaptive radiation in the marine environment. Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish ( Amphiprion frenatus ). We obtained 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly and annotation was satisfying, with 96.5% of the Actinopterygii Benchmarking Universal Single‐Copy Orthologs (BUSCOs) being retrieved in A. frenatus assembly. The quality of the resulting assembly is comparable to other bony fish assemblies. This resource is valuable for advancing studies of the particular life history traits of clownfishes, as well as being useful for population genetic studies and the development of new phylogenetic markers. It will also open the way to comparative genomics. Indeed, future genomic comparison among closely related fishes may provide means to identify genes related to the unique adaptations to different sea anemone hosts, as well as better characterize the genomic signatures of an adaptive radiation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here