z-logo
Premium
Hydrological, Physical, and Chemical Functions and Connectivity of Non‐Floodplain Wetlands to Downstream Waters: A Review
Author(s) -
Lane Charles R.,
Leibowitz Scott G.,
Autrey Bradley C.,
LeDuc Stephen D.,
Alexander Laurie C.
Publication year - 2018
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/1752-1688.12633
Subject(s) - floodplain , wetland , environmental science , sink (geography) , hydrology (agriculture) , riparian zone , downstream (manufacturing) , ecology , geology , geography , habitat , biology , operations management , cartography , geotechnical engineering , economics
We reviewed the scientific literature on non‐floodplain wetlands (NFWs), freshwater wetlands typically located distal to riparian and floodplain systems, to determine hydrological, physical, and chemical functioning and stream and river network connectivity. We assayed the literature for source, sink, lag, and transformation functions, as well as factors affecting connectivity. We determined NFWs are important landscape components, hydrologically, physically, and chemically affecting downstream aquatic systems. NFWs are hydrologic and chemical sources for other waters, hydrologically connecting across long distances and contributing compounds such as methylated mercury and dissolved organic matter. NFWs reduced flood peaks and maintained baseflows in stream and river networks through hydrologic lag and sink functions, and sequestered or assimilated substantial nutrient inputs through chemical sink and transformative functions. Landscape‐scale connectivity of NFWs affects water and material fluxes to downstream river networks, substantially modifying the characteristics and function of downstream waters. Many factors determine the effects of NFW hydrological, physical, and chemical functions on downstream systems, and additional research quantifying these factors and impacts is warranted. We conclude NFWs are hydrologically, chemically, and physically interconnected with stream and river networks though this connectivity varies in frequency, duration, magnitude, and timing.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here