Open Access
Engineering Saccharomyces cerevisiae ‐based biosensors for copper detection
Author(s) -
Fan Cong,
Zhang Danli,
Mo Qiwen,
Yuan Jifeng
Publication year - 2022
Publication title -
microbial biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.287
H-Index - 74
ISSN - 1751-7915
DOI - 10.1111/1751-7915.14105
Subject(s) - saccharomyces cerevisiae , biosensor , yeast , copper , activator (genetics) , chemistry , nanotechnology , biochemistry , materials science , gene , organic chemistry
Abstract Heavy metals, that is Cu(II), are harmful to the environment. There is an increasing demand to develop inexpensive detection methods for heavy metals. Here, we developed a yeast biosensor with reduced‐noise and improved signal output for potential on‐site copper ion detection. The copper‐sensing circuit was achieved by employing a secondary genetic layer to control the galactose‐inducible (GAL) system in Saccharomyces cerevisiae . The reciprocal control of the Gal4 activator and Gal80 repressor under copper‐responsive promoters resulted in a low‐noise and sensitive yeast biosensor for copper ion detection. Furthermore, we developed a betaxanthin‐based colorimetric assay, as well as 2‐phenylethanol and styrene‐based olfactory outputs for the copper ion detection. Notably, our engineered yeast sensor confers a narrow range switch‐like behaviour, which can give a ‘yes/no’ response when coupled with a betaxanthin‐based visual phenotype. Taken together, we envision that the design principle established here might be applicable to develop other sensing systems for various chemical detections.