z-logo
open-access-imgOpen Access
Role of phenazine‐enzyme physiology for current generation in a bioelectrochemical system
Author(s) -
Chukwubuikem Anthony,
Berger Carola,
Mady Ahmed,
Rosenbaum Miriam A.
Publication year - 2021
Publication title -
microbial biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.287
H-Index - 74
ISSN - 1751-7915
DOI - 10.1111/1751-7915.13827
Subject(s) - periplasmic space , phenazine , biochemistry , pyocyanin , cytoplasm , electron transfer , chemistry , enzyme , biology , electron transport chain , virulence , gene , escherichia coli , quorum sensing , photochemistry
Summary Pseudomonas aeruginosa produces phenazine‐1‐carboxylic acid (PCA) and pyocyanin (PYO), which aid its anaerobic survival by mediating electron transfer to distant oxygen. These natural secondary metabolites are being explored in biotechnology to mediate electron transfer to the anode of bioelectrochemical systems. A major challenge is that only a small fraction of electrons from microbial substrate conversion is recovered. It remained unclear whether phenazines can re‐enter the cell and thus, if the electrons accessed by the phenazines arise mainly from cytoplasmic or periplasmic pathways. Here, we prove that the periplasmic glucose dehydrogenase (Gcd) of P . aeruginosa and P . putida is involved in the reduction of natural phenazines. PYO displayed a 60‐fold faster enzymatic reduction than PCA; PCA was, however, more stable for long‐term electron shuttling to the anode. Evaluation of a Gcd knockout and overexpression strain showed that up to 9% of the anodic current can be designated to this enzymatic reaction. We further assessed phenazine uptake with the aid of two molecular biosensors, which experimentally confirm the phenazines’ ability to re‐enter the cytoplasm. These findings significantly advance the understanding of the (electro) physiology of phenazines for future tailoring of phenazine electron discharge in biotechnological applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here