z-logo
open-access-imgOpen Access
Co‐occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site
Author(s) -
Thomas Jesse C.,
Oladeinde Adelumola,
Kieran Troy J.,
Finger John W.,
BayonaVásquez Natalia J.,
Cartee John C.,
Beasley James C.,
Seaman John C.,
McArthur J Vuan,
Rhodes Olin E.,
Glenn Travis C.
Publication year - 2020
Publication title -
microbial biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.287
H-Index - 74
ISSN - 1751-7915
DOI - 10.1111/1751-7915.13578
Subject(s) - soil water , radionuclide , environmental chemistry , contamination , actinobacteria , soil contamination , biology , environmental science , ecology , bacteria , 16s ribosomal rna , chemistry , physics , genetics , quantum mechanics
Summary Contaminants such as heavy metals may contribute to the dissemination of antimicrobial resistance (AMR) by enriching resistance gene determinants via co‐selection mechanisms. In the present study, a survey was performed on soils collected from four areas at the Savannah River Site (SRS), South Carolina, USA, with varying contaminant profiles: relatively pristine (Upper Three Runs), heavy metals (Ash Basins), radionuclides (Pond B) and heavy metal and radionuclides (Tim’s Branch). Using 16S rRNA gene amplicon sequencing, we explored the structure and diversity of soil bacterial communities. Sites with legacies of metal and/or radionuclide contamination displayed significantly lower bacterial diversity compared to the reference site. Metagenomic analysis indicated that multidrug and vancomycin antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) including those associated with copper, arsenic, iron, nickel and zinc were prominent in all soils including the reference site. However, significant differences were found in the relative abundance and diversity of certain ARGs and MRGs in soils with metal/radionuclide contaminated soils compared to the reference site. Co‐occurrence patterns revealed significant ARG/MRG subtypes in predominant soil taxa including Acidobacteriaceae , Bradyrhizobium , Mycobacterium , Streptomyces , Verrumicrobium , Actinomadura and Solirubacterales. Overall, the study emphasizes the potential risk of human activities on the dissemination of AMR in the environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here