z-logo
open-access-imgOpen Access
One‐vector CRISPR/Cas9 genome engineering of the industrial fungus Ashbya gossypii
Author(s) -
Jiménez Alberto,
MuñozFernández Gloria,
LedesmaAmaro Rodrigo,
Buey Rubén M.,
Revuelta José L.
Publication year - 2019
Publication title -
microbial biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.287
H-Index - 74
ISSN - 1751-7915
DOI - 10.1111/1751-7915.13425
Subject(s) - crispr , biology , cas9 , computational biology , genome editing , genome , gene , genetics , genomics
Summary The filamentous fungus Ashbya gossypii is currently used for the industrial production of vitamin B2. Furthermore, the ability of A. gossypii to grow using low‐cost substrates together with the inexpensive downstream processing makes this fungus an attractive biotechnological chassis. Indeed, the production in A. gossypii of other high‐added value compounds such as folic acid, nucleosides and biolipids has been described. Hence, the development of new methods to expand the molecular toolkit for A. gossypii genomic manipulation constitutes an important issue for the biotechnology of this fungus. In this work, we present a one‐vector CRISPR/Cas9 system for genomic engineering of A. gossypii . We demonstrate the efficiency of the system as a marker‐less approach for nucleotide deletions and substitutions both with visible and invisible phenotypes. Particularly, the system has been validated for three types of genomic editions: gene inactivation, the genomic erasure of lox P scars and the introduction of point mutations. We anticipate that the use of the CRISPR/Cas9 system for A. gossypii will largely contribute to facilitate the genomic manipulations of this industrial fungus in a marker‐less manner.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here