
CRISPR /Cas‐based screening of a gene activation library in Saccharomyces cerevisiae identifies a crucial role of OLE 1 in thermotolerance
Author(s) -
Li Pengsong,
Fu Xiaofen,
Zhang Lei,
Li Shizhong
Publication year - 2019
Publication title -
microbial biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.287
H-Index - 74
ISSN - 1751-7915
DOI - 10.1111/1751-7915.13333
Subject(s) - crispr , saccharomyces cerevisiae , biology , yeast , gene , functional genomics , genetics , genomic library , computational biology , genome editing , genetic screen , genomics , genome , phenotype , peptide sequence
Summary CRISPR/Cas‐based (clustered regularly interspaced short palindromic repeats/CRISPR‐associated) screening has been proved to be an efficient method to study functional genomics from yeast to human. In this study, we report the development of a focused CRISPR/Cas‐based gene activation library in Saccharomyces cerevisiae and its application in gene identification based on functional screening towards improved thermotolerance. The gene activation library was subjected to screening at 42°C, and the same library cultured at 30°C was set as a control group. After five successive subcultures, five clones were randomly picked from the libraries cultured at 30 and 42°C, respectively. The five clones selected at 30°C contain the specificity sequences of five different single guide RNAs, whereas all the five clones selected at 42°C contain the specificity sequence of one sgRNA that targets the promoter region of OLE1 . A crucial role of OLE1 in thermotolerance was identified: the overexpression of OLE1 increased fatty acid unsaturation, and thereby helped counter lipid peroxidation caused by heat stress, rendering the yeast thermotolerant. This study described the application of CRISPR/Cas‐based gene activation screening with an example of thermotolerant yeast screening, demonstrating that this method can be used to identify functional genes in yeast.