z-logo
open-access-imgOpen Access
Modelling biofilm‐induced formation damage and biocide treatment in subsurface geosystems
Author(s) -
Ezeuko C. C.,
Sen A.,
Gates I. D.
Publication year - 2013
Publication title -
microbial biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.287
H-Index - 74
ISSN - 1751-7915
DOI - 10.1111/1751-7915.12002
Subject(s) - biocide , biofilm , microbiology and biotechnology , bacterial growth , chemistry , chemical engineering , bacteria , biology , engineering , organic chemistry , genetics
Summary Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non‐trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth‐limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non‐persister, or non‐viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes ‘innate’ and ‘biocide‐induced’ factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm‐induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm‐forming cells at desired sites.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here