z-logo
Premium
Study on the water state, migration, and microstructure modification during the process of salt‐reduced stewed duck
Author(s) -
Li Rui,
Kuang Wei,
Hu Yili,
Jin Weiping,
Liao E,
Chen Jiwang,
Zhou Xiaorong,
Wang Haibin
Publication year - 2021
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/1750-3841.15857
Subject(s) - chemistry , sodium , salt (chemistry) , free water , chloride , potassium , microstructure , food science , salt water , crystallography , organic chemistry , geotechnical engineering , environmental engineering , engineering
Abstract High salt content is one of the major problems for stewed products. To help address this issue, the effect of salt reduction on water migration in stewed ducks was investigated through diverse approaches, including water activity (Aw) and water‐holding capacity (WHC) assay, as well as low‐field nuclear magnetic resonance (LF‐NMR) and scanning electron microscopy (SEM) observation. Our results showed that Aw value remained stable, while centrifugal loss decreased, and cooking loss increased significantly ( p  < 0.05). The analysis of NMR indicated that, during the marinating stage, the proportion of immobilized water increased from 86.86%–89.66% (sodium chloride group) and 90.51% (salt‐reduced group), respectively. After 2 h, the free water content became 0, and then became stable until the end of marinating. In the stewing stage, at the beginning 20 min, relaxation time of immobilized water decreased to about 35 ms and the ratio of immobilized water significantly reduced ( p  < 0.05) by 5.38% (sodium chloride group) and 5.95% (salt‐reduced group), respectively. Free water peak was detected upon stewing of 10 min, and 20 min later, there was no significant difference in the proportion of free water ( p  > 0.05). In general, no significance was observed in water behavior and microstructure of stewed duck meat between the salt reduction group and sodium chloride group. In addition, SEM analysis revealed that marinating could expand the muscle fiber gap to accommodate more immobilized water. However, the fiber was looser at the initial stage of stewing and then became more compact. Practical Application This work demonstrates potentially feasible to produce salt‐reduced duck products.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here