z-logo
Premium
Characterization of astragaloside I‐IV based on the separation of HPTLC from Pleurotus ostreatus cultivated with Astragalus
Author(s) -
Li Huizhen,
Zhao Yana,
Yang Weimin,
Zhang Zhijun
Publication year - 2020
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/1750-3841.15398
Subject(s) - chemistry , sapogenin , pleurotus ostreatus , saponin , chromatography , pleurotus , thin layer chromatography , triterpene , astragaloside , glycoside , high performance thin layer chromatography , food science , high performance liquid chromatography , mushroom , stereochemistry , medicine , alternative medicine , pathology
In this study, total saponins were extracted from Pleurotus ostreatus cultivated with Astragalus as one of organic culture substrates. High Performance Thin Layer Chromatography (HPTLC) assay showed total saponins could be separated effectively, and four kinds of spots were identified as AG I, AG II, AG III, and AG IV, respectively. FTIR spectra based on HPTLC separation assay showed the saponin characteristic groups including ‐OH, C‐H, C=O, and the glycoside linkaged to sapogenin group C‐O‐C, suggesting the four kinds of spots belonged to cycloartane‐type triterpene saponins. The primary mass spectra of precursor ion (HPTLC‐ESI‐MS) assay further proved the main composition of four kinds of spots was AG I‐IV, respectively. Physical properties, including the detection of specific rotation and melting point, revealed the separation of high‐purity saponin monomer by HPTLC. HPTLC‐dual wavelength spectrodensitometric method detection showed that content of astragaloside I‐IV was ranged from 0.2 to 0.5 mg/g, and the total astragalosides contents attained to 1.397 mg/g, indicating P. ostreatus could bioaccumulate astragalosides from Astragalus . These results demonstrated the characterization of astragalosides based on the separation of HPTLC was effective, and supported to consider astragalosides‐enriched P. ostre a tus as functional edible fungus for food and medical applications. Practical Application Currently, the consumption of enriched foods has become common and continues to increase due to urgent demanding for foods with high nutritional value. Pleurotus ostreatus is a functional edible fungus, which not only can produce secondary metabolites, but can enrich bioactive ingredients. Astragalosides have a wide range of biological activities, especially currently being tested as cardioprotective agent. In this study, P. ostreatus was cultivated through adding Astragalus into culture substrates, which realized massive enrichment of astragalosides. Astragalosides‐enriched P. ostreatus as functional edible fungus could be extensively used in food and medical areas, especially for the prevention of cardiovascular diseases.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here