Premium
Effect of Extraction Method on the Oxidative Stability of Camelina Seed Oil Studied by Differential Scanning Calorimetry
Author(s) -
Belayneh Henok D.,
Wehling Randy L.,
Cahoon Edgar B.,
Ciftci Ozan N.
Publication year - 2017
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/1750-3841.13652
Subject(s) - camelina , differential scanning calorimetry , chemistry , extraction (chemistry) , camelina sativa , ethanol , food science , hexane , lipid oxidation , chromatography , organic chemistry , antioxidant , agronomy , biology , physics , crop , thermodynamics
Abstract Camelina seed is a new alternative omega‐3 source attracting growing interest. However, it is susceptible to oxidation due to its high omega‐3 content. The objective of this study was to improve the oxidative stability of the camelina seed oil at the extraction stage in order to eliminate or minimize the use of additive antioxidants. Camelina seed oil extracts were enriched in terms of natural antioxidants using ethanol‐modified supercritical carbon dioxide (SC‐CO 2 ) extraction. Oxidative stability of the camelina seed oils extracted by ethanol modified SC‐CO 2 was studied by differential scanning calorimeter (DSC), and compared with cold press, hexane, and SC‐CO 2 methods. Nonisothermal oxidation kinetics of the oils obtained by different extraction methods were studied by DSC at varying heating rates (2.5, 5, 10, and 15 ° C/min). Increasing ethanol level in the ethanol‐modified SC‐CO 2 increased the oxidative stability. Based on oxidation onset temperatures ( T on ), SC‐CO 2 containing 10% ethanol yielded the most stable oil. Oxidative stability depended on the type and content of the polar fractions, namely, phenolic compounds and phospholipids. Phenolic compounds acted as natural antioxidants, whereas increased phospholipid contents decreased the stability. Study has shown that the oxidative stability of the oils can be improved at the extraction stage and this may eliminate the need for additive antioxidants.