Premium
Effect of β‐Glucan–Rich Barley Flour Fraction on Rheology and Quality of Frozen Yeasted Dough
Author(s) -
Hamed Abdelmagid,
Ragaee Sanaa,
AbdelAal ElSayed M.
Publication year - 2014
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/1750-3841.12702
Subject(s) - rheology , food science , gluten , chemistry , gluten free , barley flour , wheat flour , congelation , materials science , composite material , physics , thermodynamics
Research has shown that prolonged frozen storage of bread dough reduces the quality of the end product. In this study, the effect of air‐classified barley flour fraction rich in β‐glucan (approximately 25%) on rheology and quality of frozen yeasted bread dough was investigated. Wheat flour (W) was replaced by air‐classified barley flour fraction (B) at 10% without or with 1.4% vital gluten to produce β‐glucan enriched barley dough (WB) or barley dough plus gluten (WB + G). Dough products were stored at −18 ºC for 8 wk and their rheological properties were investigated weekly. During frozen storage dough extensibility increased, while elastic and viscous moduli decreased. Differential scanning calorimeter and nuclear magnetic resonance data indicated that WB and WB + G dough products contained approximately 10% less freezable water and 9% more bound water compared to the control dough (W). β‐Glucan enriched dough also exhibited less changes in gluten network as shown by SEM photographs. The addition of air‐classified barley flour fraction at 10% in frozen dough reduced deterioration effects caused by frozen storage via minimizing water redistribution and maintaining rheological properties of frozen dough.