Premium
Patterns and causes of geographic variation in bat echolocation pulses
Author(s) -
JIANG Tinglei,
WU Hui,
FENG Jiang
Publication year - 2015
Publication title -
integrative zoology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.904
H-Index - 34
ISSN - 1749-4877
DOI - 10.1111/1749-4877.12129
Subject(s) - human echolocation , geographic variation , variation (astronomy) , sexual selection , biological dispersal , adaptation (eye) , biology , ecology , selection (genetic algorithm) , evolutionary biology , computer science , population , physics , demography , neuroscience , artificial intelligence , sociology , astrophysics
Evolutionary biologists have a long‐standing interest in how acoustic signals in animals vary geographically, because divergent ecology and sensory perception play an important role in speciation. Geographic comparisons are valuable in determining the factors that influence divergence of acoustic signals. Bats are social mammals and they depend mainly on echolocation pulses to locate prey, to navigate and to communicate. Mounting evidence shows that geographic variation of bat echolocation pulses is common, with a mean 5–10 kHz differences in peak frequency, and a high level of individual variation may be nested in this geographical variation. However, understanding the geographic variation of echolocation pulses in bats is very difficult, because of differences in sample and statistical analysis techniques as well as the variety of factors shaping the vocal geographic evolution. Geographic differences in echolocation pulses of bats generally lack latitudinal, longitudinal and elevational patterns, and little is known about vocal dialects. Evidence is accumulating to support the fact that geographic variation in echolocation pulses of bats may be caused by genetic drift, cultural drift, ecological selection, sexual selection and social selection. Future studies could relate geographic differences in echolocation pulses to social adaptation, vocal learning strategies and patterns of dispersal. In addition, new statistical techniques and acoustic playback experiments may help to illustrate the causes and consequences of the geographic evolution of echolocation pulse in bats.