z-logo
Premium
Cover Caption
Publication year - 2020
Publication title -
insect science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.991
H-Index - 45
eISSN - 1744-7917
pISSN - 1672-9609
DOI - 10.1111/1744-7917.12683
Subject(s) - biology , helicoverpa armigera , cry1ac , gene , gene silencing , gene knockout , rna interference , crispr , genetics , bioassay , strain (injury) , transgene , botany , genetically modified crops , larva , rna , anatomy
Previous studies have confirmed HaCad (cadherin), HaABCC2 and HaABCC3 are functional receptors of Bt toxin Cry1Ac in cotton bollworm, Helicoverpa armigera. Aminopeptidase N1 (APN1) has been suggested as a putative receptor in several lepidopteran insects including H. armigera through evidence from RNAi‐based gene silencing approaches. In the current study, we tested the role of APNs in the mode of action of Bt toxins using CRISPR/Cas9‐mediated gene knockout. Three APN genes ( HaAPN1, HaAPN2 and HaAPN5 ) were individually knocked out in a susceptible SCD strain of H. armigera to establish three homozygous knockout strains. Bioassay results showed that none of the three knockouts had significant changes in susceptibility to Cry1A or Cry2A toxins when compared with the SCD strain. This suggests that the three HaAPN genes we tested may not be critical in the mode of action of Cry1A or Cry2A toxins in H. armigera (see pages 440–448). Photo by Yi‐Dong Wu.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here