Premium
The evolutionary development of plant‐feeding insects and their nutritional endosymbionts
Author(s) -
Skidmore Isabel H.,
Hansen Allison K.
Publication year - 2017
Publication title -
insect science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.991
H-Index - 45
eISSN - 1744-7917
pISSN - 1672-9609
DOI - 10.1111/1744-7917.12463
Subject(s) - biology , insect , symbiosis , herbivore , host (biology) , ecology , evolutionary biology , genetics , bacteria
Abstract Herbivorous insects have evolved diverse mechanisms enabling them to feed on plants with suboptimal nutrient availability. Low nutrient availability negatively impacts insect herbivore development and fitness. To overcome this obstacle numerous insect lineages have evolved intimate associations with nutritional endosymbionts. This is especially true for insects that specialize on nitrogen‐poor substrates, as these insects are highly dependent on intracellular symbionts to provide nitrogen lacking in their insect host's diet. Emerging evidence in these systems suggest that the symbiont's and/or the insect's biosynthetic pathways are dynamically regulated throughout the insect's development to potentially cope with the insect's changing nutritional demands. In this review, we evaluate the evolutionary development of symbiotic insect cells (bacteriocytes) by comparing and contrasting genes and mechanisms involved in maintaining and regulating the nutritional symbiosis throughout insect development in a diversity of insect herbivore‐endosymbiont associations. With new advances in genome sequencing and functional genomics, we evaluate to what extent nutritional symbioses are shaped by (i) the regulation of symbiont titer, (ii) the regulation of insect symbiosis genes, and (iii) the regulation of symbiont genes. We discuss how important these mechanisms are for the biosynthesis of essential amino acids and vitamins across insect life stages in divergent insect–symbiont systems. We conclude by suggesting future directions of research to further elucidate the evolutionary development of bacteriocytes and the impact of these nutritional symbioses on insect–plant interactions.