Premium
Linkage and linkage disequilibrium among the markers in the forensic MPS panels
Author(s) -
Li Ran,
Budowle Bruce,
Sun Hongyu,
Ge Jianye
Publication year - 2021
Publication title -
journal of forensic sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.715
H-Index - 96
eISSN - 1556-4029
pISSN - 0022-1198
DOI - 10.1111/1556-4029.14724
Subject(s) - linkage disequilibrium , genetics , microsatellite , genetic marker , biology , linkage (software) , haplotype , single nucleotide polymorphism , genetic linkage , evolutionary biology , computational biology , gene , genotype , allele
For the past two to three decades, forensic DNA evidence has been analyzed with a limited number of short tandem repeats (STRs), and these STRs are usually assumed to be independent for statistical calculations. With the development and implementation of the MPS technologies, more autosomal markers, both single nucleotide polymorphisms (SNPs) and STRs, can be analyzed. A number of these markers are physically very close to each other, and it may not be appropriate to assume all these markers are genetically unlinked or in linkage equilibrium. In this study, publicly accessible genomic data from five representative populations were used to evaluate the genetic linkage and linkage disequilibrium (LD) between autosomal markers represented in six major commercial panels (in total, 362 markers). Among the 3041 syntenic marker pairs, 1524 pairs had sex‐average genetic distances <50 cM, and thus, these marker pairs can be considered as genetically linked. Among the 143 marker pairs with physical distances <1 Mb, 19 LD haplotype blocks (comprising 39 SNPs in total) were detected for at least one of the tested populations. Statistical methods for interpreting linked markers and/or markers in LD were suggested for various case scenarios.