z-logo
Premium
Nonparametric Generalized Least Squares in Applied Regression Analysis
Author(s) -
O'Hara Michael,
Parmeter Christopher F.
Publication year - 2013
Publication title -
pacific economic review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.34
H-Index - 33
eISSN - 1468-0106
pISSN - 1361-374X
DOI - 10.1111/1468-0106.12038
Subject(s) - heteroscedasticity , nonparametric statistics , estimator , econometrics , parametric statistics , generalized least squares , least squares function approximation , mathematics , statistics , nonparametric regression , function (biology) , evolutionary biology , biology
This paper compares a nonparametric generalized least squares ( NPGLS ) estimator to parametric feasible GLS ( FGLS ) and variants of heteroscedasticity robust standard error estimators ( HRSE ) in an applied setting. NPGLS consistently estimates the unknown scedastic function and produces more efficient parameter estimates than HRSE . We apply these various approaches for handling heteroscedasticity to data on professor rankings obtained from R ate M y P rofessors.com. We find that the statistical significance of key variables differs across seven versions of HRSE , leading to different conclusions, and a standard parametric approach to FGLS suffers from misspecification. NPGLS combines the virtues of both of these parametric approaches.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here