z-logo
Premium
Modelling daily multivariate pollutant data at multiple sites
Author(s) -
Shaddick Gavin,
Wakefield Jon
Publication year - 2002
Publication title -
journal of the royal statistical society: series c (applied statistics)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.205
H-Index - 72
eISSN - 1467-9876
pISSN - 0035-9254
DOI - 10.1111/1467-9876.00273
Subject(s) - pollutant , environmental science , sampling (signal processing) , markov chain monte carlo , environmental data , multivariate statistics , bayesian probability , computer science , environmental monitoring , environmental engineering , ecology , machine learning , filter (signal processing) , computer vision , biology , artificial intelligence
Summary. This paper considers the spatiotemporal modelling of four pollutants measured daily at eight monitoring sites in London over a 4‐year period. Such multiple‐pollutant data sets measured over time at multiple sites within a region of interest are typical. Here, the modelling was carried out to provide the exposure for a study investigating the health effects of air pollution. Alternative objectives include the design problem of the positioning of a new monitoring site, or for regulatory purposes to determine whether environmental standards are being met. In general, analyses are hampered by missing data due, for example, to a particular pollutant not being measured at a site, a monitor being inactive by design (e.g. a 6‐day monitoring schedule) or because of an unreliable or faulty monitor. Data of this type are modelled here within a dynamic linear modelling framework, in which the dependences across time, space and pollutants are exploited. Throughout the approach is Bayesian, with implementation via Markov chain Monte Carlo sampling.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here