z-logo
Premium
Grouped data exponentially weighted moving average control charts
Author(s) -
Steiner Stefan H.
Publication year - 1998
Publication title -
journal of the royal statistical society: series c (applied statistics)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.205
H-Index - 72
eISSN - 1467-9876
pISSN - 0035-9254
DOI - 10.1111/1467-9876.00107
Subject(s) - ewma chart , cusum , control chart , statistics , statistical process control , mathematics , chart , x bar chart , moving average , shewhart individuals control chart , computer science , process (computing) , operating system
In the manufacture of metal fasteners in a progressive die operation, and other industrial situations, important quality dimensions cannot be measured on a continuous scale, and manufactured parts are classified into groups by using a step gauge. This paper proposes a version of exponentially weighted moving average (EWMA) control charts that are applicable to monitoring the grouped data for process shifts. The run length properties of this new grouped data EWMA chart are compared with similar results previously obtained for EWMA charts for variables data and with those for cumulative sum (CUSUM) schemes based on grouped data. Grouped data EWMA charts are shown to be nearly as efficient as variables‐based EWMA charts and are thus an attractive alternative when the collection of variables data is not feasible. In addition, grouped data EWMA charts are less affected by the discreteness that is inherent in grouped data than are grouped data CUSUM charts. In the metal fasteners application, grouped data EWMA charts were simple to implement and allowed the rapid detection of undesirable process shifts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here