Premium
A model for markers and latent health status
Author(s) -
Ting Lee MelLing,
DeGruttola Victor,
Schoenfeld David
Publication year - 2000
Publication title -
journal of the royal statistical society: series b (statistical methodology)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.523
H-Index - 137
eISSN - 1467-9868
pISSN - 1369-7412
DOI - 10.1111/1467-9868.00261
Subject(s) - unobservable , covariate , bivariate analysis , proportional hazards model , econometrics , statistics , accelerated failure time model , mathematics , computer science
We extend the bivariate Wiener process considered by Whitmore and co‐workers and model the joint process of a marker and health status. The health status process is assumed to be latent or unobservable. The time to reach the primary end point or failure (death, onset of disease, etc.) is the time when the latent health status process first crosses a failure threshold level. Inferences for the model are based on two kinds of data: censored survival data and marker measurements. Covariates, such as treatment variables, risk factors and base‐line conditions, are related to the model parameters through generalized linear regression functions. The model offers a much richer potential for the study of treatment efficacy than do conventional models. Treatment effects can be assessed in terms of their influence on both the failure threshold and the health status process parameters. We derive an explicit formula for the prediction of residual failure times given the current marker level. Also we discuss model validation. This model does not require the proportional hazards assumption and hence can be widely used. To demonstrate the usefulness of the model, we apply the methods in analysing data from the protocol 116a of the AIDS Clinical Trials Group.