Premium
Limited information likelihood analysis of survey data
Author(s) -
Chambers Raymond L.,
Dorfman Alan H.,
Wang Suojin
Publication year - 1998
Publication title -
journal of the royal statistical society: series b (statistical methodology)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.523
H-Index - 137
eISSN - 1467-9868
pISSN - 1369-7412
DOI - 10.1111/1467-9868.00132
Subject(s) - estimator , statistics , survey sampling , inference , econometrics , mathematics , sampling design , survey data collection , sample (material) , computer science , population , artificial intelligence , chemistry , demography , chromatography , sociology
Analysts of survey data are often interested in modelling the population process, or superpopulation, that gave rise to a ‘target’ set of survey variables. An important tool for this is maximum likelihood estimation. A survey is said to provide limited information for such inference if data used in the design of the survey are unavailable to the analyst. In this circumstance, sample inclusion probabilities, which are typically available, provide information which needs to be incorporated into the analysis. We consider the case where these inclusion probabilities can be modelled in terms of a linear combination of the design and target variables, and only sample values of these are available. Strict maximum likelihood estimation of the underlying superpopulation means of these variables appears to be analytically impossible in this case, but an analysis based on approximations to the inclusion probabilities leads to a simple estimator which is a close approximation to the maximum likelihood estimator. In a simulation study, this estimator outperformed several other estimators that are based on approaches suggested in the sampling literature.