Premium
Mixture models in measurement error problems, with reference to epidemiological studies
Author(s) -
Richardson Sylvia,
Leblond Laurent,
Jaussent Isabelle,
Green Peter J.
Publication year - 2002
Publication title -
journal of the royal statistical society: series a (statistics in society)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.103
H-Index - 84
eISSN - 1467-985X
pISSN - 0964-1998
DOI - 10.1111/1467-985x.00252
Subject(s) - covariate , statistics , logistic regression , bayesian probability , econometrics , observational error , mathematics , bayesian linear regression , data set , computer science , bayesian inference
Summary. The paper focuses on a Bayesian treatment of measurement error problems and on the question of the specification of the prior distribution of the unknown covariates. It presents a flexible semiparametric model for this distribution based on a mixture of normal distributions with an unknown number of components. Implementation of this prior model as part of a full Bayesian analysis of measurement error problems is described in classical set‐ups that are encountered in epidemiological studies: logistic regression between unknown covariates and outcome, with a normal or log‐normal error model and a validation group. The feasibility of this combined model is tested and its performance is demonstrated in a simulation study that includes an assessment of the influence of misspecification of the prior distribution of the unknown covariates and a comparison with the semiparametric maximum likelihood method of Roeder, Carroll and Lindsay. Finally, the methodology is illustrated on a data set on coronary heart disease and cholesterol levels in blood.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom