Premium
Conditional Prior Proposals in Dynamic Models
Author(s) -
KnorrHeld Leonhard
Publication year - 1999
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/1467-9469.00141
Subject(s) - mathematics , prior probability , markov chain monte carlo , markov chain , conditional probability distribution , metropolis–hastings algorithm , bayesian probability , bayesian inference , algorithm , mathematical optimization , computer science , statistics
ABSTRACT. Dynamic models extend state space models to non‐normal observations. This paper suggests a specific hybrid Metropolis–Hastings algorithm as a simple device for Bayesian inference via Markov chain Monte Carlo in dynamic models. Hastings proposals from the (conditional) prior distribution of the unknown, time‐varying parameters are used to update the corresponding full conditional distributions. It is shown through simulated examples that the methodology has optimal performance in situations where the prior is relatively strong compared to the likelihood. Typical examples include smoothing priors for categorical data. A specific blocking strategy is proposed to ensure good mixing and convergence properties of the simulated Markov chain. It is also shown that the methodology is easily extended to robust transition models using mixtures of normals. The applicability is illustrated with an analysis of a binomial and a binary time series, known in the literature.