Premium
Implicit Representations of Rough Surfaces
Author(s) -
Hart John C.
Publication year - 1997
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/1467-8659.00125
Subject(s) - iterated function system , rendering (computer graphics) , fractal , iterated function , mathematics , computer science , algorithm , computer graphics (images) , mathematical analysis
Implicit surface techniques provide useful tools for modeling and rendering smooth surfaces. Deriving implicit formulations for fractal representations extends the scope of implicit surface techniques to rough surfaces. Linear fractals modeled by recurrent iterated function systems may be defined implicitly using either geometric distance or escape time. Random fractals modeled using Perlin's noise function are already defined implicitly when described as “hypertexture.” Deriving new implicit formulae is only the first step. Unlike their smooth counterparts, rough implicit surfaces require special rendering techniques that do not rely on continuous differentiation of the defining function. Preliminary experiments applying blending operations to rough surfaces have succeeded in an initial attempt to overcome current challenges in natural modeling. The grafting of a stem onto the base of a linear fractal leaf continuously blends smooth detail into rough detail. The blend of two textured cylinders interpolates geometric bark across branching points in a tree.