Premium
Theory & Methods: Data Sharpening for Hazard Rate Estimation
Author(s) -
Claeskens Gerda,
Hall Peter
Publication year - 2002
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/1467-842x.00230
Subject(s) - sharpening , estimator , censoring (clinical trials) , mathematics , estimation , hazard , statistics , density estimation , transformation (genetics) , data driven , econometrics , computer science , artificial intelligence , biochemistry , chemistry , management , organic chemistry , economics , gene
Data sharpening is a general tool for enhancing the performance of statistical estimators, by altering the data before substituting them into conventional methods. In one of the simplest forms of data sharpening, available for curve estimation, an explicit empirical transformation is used to alter the data. The attraction of this approach is diminished, however, if the formula has to be altered for each different application. For example, one could expect the formula for use in hazard rate estimation to differ from that for straight density estimation, since a hazard rate is a ratio–type functional of a density. This paper shows that, in fact, identical data transformations can be used in each case, regardless of whether the data involve censoring. This dramatically simplifies the application of data sharpening to problems involving hazard rate estimation, and makes data sharpening attractive.