z-logo
Premium
Practical Maximum Pseudolikelihood for Spatial Point Patterns
Author(s) -
Baddeley Adrian,
Turner Rolf
Publication year - 2000
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/1467-842x.00128
Subject(s) - mathematics , point process , exponential family , covariate , poisson point process , poisson distribution , quasi likelihood , spatial analysis , cox process , computation , spatial dependence , exponential function , generalized linear model , statistics , algorithm , count data , poisson process , mathematical analysis
This paper describes a technique for computing approximate maximum pseudolikelihood estimates of the parameters of a spatial point process. The method is an extension of Berman & Turner's (1992) device for maximizing the likelihoods of inhomogeneous spatial Poisson processes. For a very wide class of spatial point process models the likelihood is intractable, while the pseudolikelihood is known explicitly, except for the computation of an integral over the sampling region. Approximation of this integral by a finite sum in a special way yields an approximate pseudolikelihood which is formally equivalent to the (weighted) likelihood of a loglinear model with Poisson responses. This can be maximized using standard statistical software for generalized linear or additive models, provided the conditional intensity of the process takes an ‘exponential family’ form. Using this approach a wide variety of spatial point process models of Gibbs type can be fitted rapidly, incorporating spatial trends, interaction between points, dependence on spatial covariates, and mark information.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here