z-logo
Premium
Seasonal environmental variability drives microdiversity within a coastal Synechococcus population
Author(s) -
HunterCevera Kristen R.,
Hamilton Bryan R.,
Neubert Michael G.,
Sosik Heidi M.
Publication year - 2021
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1111/1462-2920.15666
Subject(s) - biology , synechococcus , ecology , population , abundance (ecology) , cyanobacteria , genetics , demography , sociology , bacteria
Summary Marine microbes often show a high degree of physiological or ecological diversity below the species level. This microdiversity raises questions about the processes that drive diversification and permit coexistence of diverse yet closely related marine microbes, especially given the theoretical efficiency of competitive exclusion. Here, we provide insight with an 8‐year time series of diversity within Synechococcus , a widespread and important marine picophytoplankter. The population of Synechococcus on the Northeast U.S. Shelf is comprised of six main types, each of which displays a distinct and consistent seasonal pattern. With compositional data analysis, we show that these patterns can be reproduced with a simple model that couples differential responses to temperature and light with the seasonal cycle of the physical environment. These observations support the hypothesis that temporal variability in environmental factors can maintain microdiversity in marine microbial populations. We also identify how seasonal diversity patterns directly determine overarching Synechococcus population abundance features.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here