z-logo
Premium
Osmotic stress induces gut microbiota community shift in fish
Author(s) -
Lai Keng Po,
Lin Xiao,
Tam Nathan,
Ho Jeff Cheuk Hin,
Wong Marty KwokShing,
Gu Jie,
Chan Ting Fung,
Tse William Ka Fai
Publication year - 2020
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1111/1462-2920.15150
Subject(s) - biology , gut flora , proteobacteria , microbial population biology , acclimatization , bacteria , population , operational taxonomic unit , salinity , zoology , microbiology and biotechnology , ecology , biochemistry , genetics , demography , 16s ribosomal rna , sociology
Summary Alteration of the gut microbiota plays an important role in animal health and metabolic diseases. However, little is known with respect to the influence of environmental osmolality on the gut microbial community. The aim of the current study was to determine whether the reduction in salinity affects the gut microbiota and identify its potential role in salinity acclimation. Using Oryzias melastigma as a model organism to perform progressive hypotonic transfer experiments, we evaluated three conditions: seawater control (SW), SW to 50% sea water transfer (SFW) and SW to SFW to freshwater transfer (FW). Our results showed that the SFW and FW transfer groups contained higher operational taxonomic unit microbiota diversities. The dominant bacteria in all conditions constituted the phylum Proteobacteria , with the majority in the SW and SFW transfer gut comprising Vibrio at the genus level, whereas this population was replaced by Pseudomonas in the FW transfer gut. Furthermore, our data revealed that the FW transfer gut microbiota exhibited a reduced renin–angiotensin system, which is important in SW acclimation. In addition, induced detoxification and immune mechanisms were found in the FW transfer gut microbiota. The shift of the bacteria community in different osmolality environments indicated possible roles of bacteria in facilitating host acclimation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here