Premium
Insights into the antibiotic resistance dissemination in a wastewater effluent microbiome: bacteria, viruses and vesicles matter
Author(s) -
MaestreCarballa Lucia,
Lluesma Gomez Monica,
Angla Navarro Andrea,
GarciaHeredia Inmaculada,
MartinezHernandez Francisco,
MartinezGarcia Manuel
Publication year - 2019
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1111/1462-2920.14758
Subject(s) - resistome , biology , metagenomics , polymyxin , microbiology and biotechnology , antibiotic resistance , microbiome , effluent , context (archaeology) , antibiotics , bacteria , genetics , gene , integron , paleontology , environmental engineering , engineering
Summary Wastewater treatment plants effluents are considered as hotspots for the dispersion of antibiotic resistance genes (ARGs) into natural ecosystems. The bacterial resistome (ARG collection in a metagenome) analyses have provided clues on antibacterial resistance dynamics. However, viruses and vesicles are frequently ignored. Here, we addressed the bacterial, viral and vesicle resistomes from a representative wastewater effluent in natural conditions and amended with polymyxin, which is used as a last resort antibiotic. Metagenomics showed that the natural prokaryotic resistome was vast (9000 ARG hits/Gb metagenome) and diverse, while viral resistome was two orders of magnitude lower (50 ARG hits/Gb metagenome) suggesting that viruses rarely encoded ARGs. After polymyxin amendment, data showed no ARG enrichment – including to polymyxin – in the microbiome. Remarkably, microbiomes responded to polymyxin with a vast release of putative vesicles (threefold increase compared with the control), which might be used as 'traps' to decrease the antibiotic concentration. Intriguingly, although polymyxin resistance genes (PRGs) were rare in the microbiome (0.018% of total ARG found), in the viral and vesicle fractions, PRGs were more abundant (0.5%–0.8% of total ARG found). Our data suggest that vesicles could have a more active role in the context of transmission of antibiotic resistances.