Premium
Enhanced crude oil biodegradative potential of natural phytoplankton‐associated hydrocarbonoclastic bacteria
Author(s) -
Thompson Haydn,
Angelova Angelina,
Bowler Bernard,
Jones Martin,
Gutierrez Tony
Publication year - 2017
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1111/1462-2920.13811
Subject(s) - phytoplankton , biology , population , water column , plankton , microbial population biology , phylum , ecology , marine snow , environmental chemistry , bacteria , nutrient , chemistry , genetics , demography , sociology
Summary Phytoplankton have been shown to harbour a diversity of hydrocarbonoclastic bacteria (HCB), yet it is not understood how these phytoplankton‐associated HCB would respond in the event of an oil spill at sea. Here, we assess the diversity and dynamics of the bacterial community associated with a natural population of marine phytoplankton under oil spill‐simulated conditions, and compare it to that of the free‐living (non phytoplankton‐associated) bacterial community. While the crude oil severely impacted the phytoplankton population and was likely conducive to marine oil snow formation, analysis of the MiSeq‐derived 16S rRNA data revealed dramatic and differential shifts in the oil‐amended communities that included blooms of recognized HCB (e.g., Thalassospira , Cycloclasticus ), including putative novel phyla, as well as other groups with previously unqualified oil‐degrading potential ( Olleya , Winogradskyella , and members of the inconspicuous BD7‐3 phylum). Notably, the oil biodegradation potential of the phytoplankton‐associated community exceeded that of the free‐living community, and it showed a preference to degrade substituted and non‐substituted polycyclic aromatic hydrocarbons. Our study provides evidence of compartmentalization of hydrocarbon‐degrading capacity in the marine water column, wherein HCB associated with phytoplankton are better tuned to degrading crude oil hydrocarbons than that by the community of planktonic free‐living bacteria.