z-logo
Premium
Newly isolated Nodularia phage influences cyanobacterial community dynamics
Author(s) -
Coloma S. E.,
Dienstbier A.,
Bamford D. H.,
Sivonen K.,
Roine E.,
Hiltunen T.
Publication year - 2017
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1111/1462-2920.13601
Subject(s) - biology , lytic cycle , cyanobacteria , population , synechococcus , bacteria , microbiology and biotechnology , host (biology) , prochlorococcus , ecology , genetics , virus , demography , sociology
Summary Cyanophages, that is, viruses infecting cyanobacteria, are a key component driving cyanobacterial community dynamics both ecologically and evolutionarily. In addition to reducing biomass and influencing the genetic diversity of their host populations, they can also have a wider community‐level impact due to the release of nutrients by phage‐induced cell lysis. In this study, we isolated and characterized a new cyanophage, a siphophage designated as vB_NpeS‐2AV2, capable of infecting the filamentous nitrogen fixing cyanobacterium Nodularia sp. AV2 with a lytic cycle between 12 and 18 hours. The role of the phage in the ecology of its host Nodularia and competitor Synechococcus was investigated in a set of microcosm experiments. Initially, phage‐induced cell lysis decreased the number of Nodularia cells in the cultures. However, around 18%–27% of the population was resistant against the phage infection. Nitrogen was released from the Nodularia cells as a consequence of phage activity, resulting in a seven‐fold increase in Synechococcus cell density. In conclusion, the presence of the cyanophage vB_NpeS‐2AV2 altered the ecological dynamics in the cyanobacterial community and induced evolutionary changes in the Nodularia population, causing the evolution from a population dominated by susceptible cells to a population dominated by resistant ones.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here