z-logo
Premium
The tail‐associated depolymerase of E rwinia amylovora phage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage
Author(s) -
Born Yannick,
Fieseler Lars,
Klumpp Jochen,
Eugster Marcel R.,
Zurfluh Katrin,
Duffy Brion,
Loessner Martin J.
Publication year - 2014
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1111/1462-2920.12212
Subject(s) - biology , microbiology and biotechnology , virulence , erwinia , virulence factor , cell wall , enzyme , phage display , pathogen , biochemistry , peptide , gene
Summary The depolymerase enzyme (DpoL1) encoded by the T7 ‐like phage L1 efficiently degrades amylovoran, an important virulence factor and major component of the extracellular polysaccharide ( EPS ) of its host, the plant pathogen E rwinia amylovora . Mass spectrometry analysis of hydrolysed EPS revealed that DpoL1 cleaves the galactose‐containing backbone of amylovoran. The enzyme is most active at p H  6 and 50° C , and features a modular architecture. Removal of 180 N ‐terminal amino acids was shown not to affect enzyme activity. The C ‐terminus harbours the hydrolase activity, while the N ‐terminal domain links the enzyme to the phage particle. Electron microscopy demonstrated that DpoL1 ‐specific antibodies cross‐link phage particles at their tails, either lateral or frontal, and immunogold staining confirmed that DpoL1 is located at the tail spikes. Exposure of high‐level EPS ‐producing E r. amylovora strain CFBP1430 to recombinant DpoL1 dramatically increased sensitivity to the D po‐negative phage Y2 , which was not the case for EPS ‐negative mutants or low‐level EPS ‐producing E r. amylovora . Our findings indicate that enhanced phage susceptibility is based on enzymatic removal of the EPS capsule, normally a physical barrier to Y2 infection, and that use of DpoL1 together with the broad host range, virulent phage Y2 represents an attractive combination for biocontrol of fire blight.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here