z-logo
Premium
Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats
Author(s) -
Rodriguez Ruben,
Escobedo Benny,
Lee Andrew Y.,
Thorwald Max,
GodoyLugo Jose A.,
Nakano Daisuke,
Nishiyama Akira,
Parkes David G.,
Ortiz Rudy M.
Publication year - 2020
Publication title -
clinical and experimental pharmacology and physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.752
H-Index - 103
eISSN - 1440-1681
pISSN - 0305-1870
DOI - 10.1111/1440-1681.13206
Subject(s) - endocrinology , medicine , albuminuria , valsartan , angiotensin ii receptor type 1 , chemistry , angiotensin ii , exenatide , angiotensin receptor , diabetic nephropathy , insulin resistance , olmesartan , insulin , receptor , diabetes mellitus , type 2 diabetes , blood pressure
Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP‐1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin‐resistant Otsuka Long‐Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP‐1r additively decrease oxidative damage and urinary albumin excretion (U alb V) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP‐1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4‐hydroxy‐2‐nonenal levels by 21%, 27% and 27%, respectively. At baseline, U alb V was nearly double in OLETF compared with LETO and increased to nearly 10‐fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced U alb V, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP‐1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet‐induced obesity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here