z-logo
Premium
Predators enhance resilience of a saltmarsh foundation species to drought
Author(s) -
Sharp Sean J.,
Angelini Christine
Publication year - 2021
Publication title -
journal of ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.452
H-Index - 181
eISSN - 1365-2745
pISSN - 0022-0477
DOI - 10.1111/1365-2745.13525
Subject(s) - foundation species , nekton , biology , ecology , predation , salt marsh , predator , spartina , habitat , spartina alterniflora , snail , marsh , wetland
Disturbances are increasing in size and frequency with climate change, facilitating species that opportunistically exploit areas where habitat‐forming foundation species have been removed. Although it is well‐recognized that consumers, disease and weedy space‐holders can affect foundation species’ resistance to and recovery from disturbance, how predators influence their resilience is less clear. In salt marshareas de‐vegetated by drought and intensive snail Littoraria irrorata grazing (hereafter, ‘die‐offs’), we monitored bird use and experimentally manipulated bird and nekton access to the vegetated borders of die‐off mudflats across periods of both vegetation die‐off and regrowth to explore how these predators mediate the resilience of cordgrass Spartina alterniflora , the foundation species that structures US Atlantic coast salt marshes. Surveys revealed that birds, especially probers that agitate soils, forage year‐round for invertebrates in die‐off mudflats in our study area but not in adjacent vegetated areas. During periods of die‐off, cordgrass borders accessible to bird and nekton predators retreated >3‐times slower and snail densities were halved, relative to predator exclusion cages. In predator‐accessible plots, slower border retreat corresponded to greater snail infection by a bird host‐dependent trematode parasite. During recovery, cordgrass borders revegetated more quickly, and snail densities declined faster over time in unmanipulated controls relative to predator exclusions. Synthesis . These findings suggest that birds, through their transmission of parasites to snails, appear to act synergistically with snail‐consuming nekton to slow cordgrass loss after drought‐snail disturbances. Predator access also corresponds to faster cordgrass recovery as environmental conditions improve, although the mechanisms behind this need further investigation. Thus, predators that opportunistically forage within disturbances have the potential to suppress consumer impacts through multiple mechanisms, including consumption and disease transmission, thereby bolstering foundation species’ resilience and modulating whole ecosystem responses to climate change.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here