Premium
Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type
Author(s) -
Jacobs Luke M.,
Sulman Benjamin N.,
Brzostek Edward R.,
Feighery John J.,
Phillips Richard P.
Publication year - 2018
Publication title -
journal of ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.452
H-Index - 181
eISSN - 1365-2745
pISSN - 0022-0477
DOI - 10.1111/1365-2745.12921
Subject(s) - microcosm , litter , soil water , plant litter , biology , agronomy , ectomycorrhiza , botany , mycorrhiza , ecology , ecosystem , symbiosis , genetics , bacteria
AbstractRoot‐derived inputs are increasingly viewed as primary controls of soil organic matter (SOM) formation; however, we have a limited understanding of how root decay rates depend on soil factors, and how decaying roots influence the breakdown of leaf litter and SOM. We incubated root and leaf litter (alone and in combination) from arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) trees in soils collected from forest plots dominated by AM and ECM trees in a factorial design. In each microcosm, we quantified litter decay rates and the effects of decaying litters on soil C balance. We hypothesized that (1) AM root litters would decompose faster than ECM root litters, (2) root litter decay would be greatest when decomposed in “home” soils (e.g. AM litters in AM soils and ECM litters in ECM soils) and (3) root and leaf litters would decompose faster when decaying in the same microcosms than when decaying in separate microcosms, resulting in the largest CO 2 losses. Overall, AM root litter decomposed faster than ECM root litter, and the magnitude of this effect depended on soil origin. AM litters decayed fastest in AM soils, but ECM and mixed AM–ECM litters were unaffected by soil origin. Decaying roots increased leaf litter mass loss, but only in microcosms containing soils of the same origin (e.g. AM litters in AM soils; mixed litters in mixed soils). Carbon losses were dominated by microbial respiration, and the magnitude of this flux depended on litter type and soil origin. When leaves and roots decayed together, respiratory losses exceeded those from microcosms containing leaves and roots alone, with the largest losses occurring in each litters' “home” soil. In AM soils, elevated losses were driven by roots accelerating leaf decay, while in ECM soils, elevated losses resulted from roots and leaves accelerating the decay of SOM; in mixed soils, root‐induced increases in leaf and SOM decay contributed to elevated C losses. Synthesis . Our results suggest that root, leaf and SOM decay are intertwined, and that measurements of these processes in isolation may lead to incorrect estimates of the magnitude and source of C losses from soils.